

Micro Drum Filters

Micro Drum Filters

Micro Drum Filters offer an efficient and reliable method for the separation of fine solids and organic material out of various types of liquids.

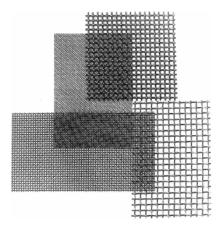

Auxill Nederland has developed this process one step further and now offers a range of rugged, efficient and economical drum filters, used in water filtration, process water circulation processes and liquid circulation.

Photo 1: Terneuzen (NL), project De Drie Ambachten (source: Waterforum Media)

Micro Drum Filters briefly:

- Filtration of surface water
- o Effluent polishing in waste water
- Removal of organic and fibrous solids
- o Filtration of (source and well) water for irrigation
- o Easy maintenance and low operation costs
- Capacity from 10 m³ up to 4500 m³/h
- o Screens from 20 μ up to 3000 μ made from Stainless Steel

Applications

Micro Drum Filters originate from the fish farming industry, which requires is a constant take in of clean water. Environmental regulations made on the effluent of such farms obligate the use of these filters to clean waste water, which loads of organic matter, such as food rests, fish droppings, scales etc.

Nowadays the application of the Micro Drum Filter has expanded to other area's. In the overview written below you will find the areas in which the drum filter is used.

Fish farming

- Filtration intake water
- Removal of solids in effluent

Cooling process

- o Filtration intake water
- o Removal of mussel seeds, algae etc.

Waste water treatment

- Effluent polishing, removal of suspended solids
- Pre filter for Membrane Bio Reactors (M.B.R.)

Laundries

o Removal of Fibers

Textile companies

- Removal of fibers
- Pre filter to UF for indigo recovery

Wood processing

o Removal of fibers

Irrigation

- Filtration of intake water, drip irrigation protection
- Algae removal

Industry general

- All processes, where light solids may cause problems
- o Pre filter for water making installations
- Pre filter for Membrane Bio Reactors (M.B.R.)

Food processing

- Removal of starches and fibrous materials
- Removal of coagulated solids out of cooking processes

Recreation parks & zoo

 Cleaning of swimming pools and recreational ponds and waterworks (mobile units)

Brief process description

The liquid, mixed with solid particles, flows into the drum through the inlet flange (→). The Micro Drum Filter contains a rotating drum, equipped with variable netting that filters the solid particles from the liquid. Through the outlet flange (→) the clean liquid flows further into the process.

With the use of a cleaning element dirt is removed from inside the drum. Solid particles are collected and disposed through a sludge conveyor screw (\rightarrow). The sludge conveyor screw is connected directly to the drum transmission. Dewatering insert is optional (see photo 4).

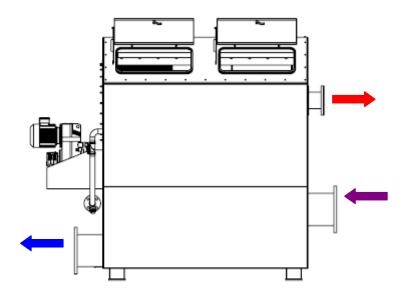


Photo 4

General data				
Screen size	20 μ - 3000 μ			
Capacity	Up to 4500 m ³ /h			
Material	SS			
Power consumption	Very low			
Maintenance	Limited			
Operation	Unattended			

Technical specifications				
Material				
Tank	SS 316 L			
Frame	SS 316 L			
Drum	SS 316 L			
Filter material	Mesh woven SS			
Drive axle	SS			
Bearing	SKF			
Piping	SS			
Spray nozzles	Bronze of SS			
Ball valve (flush)	SS			
Collection tray	SS			
Sludge outlet	SS			
Connections				
Inlet	Flanged (DIN)			
Outlet	Flanged (DIN)			
Sludge outlet	Pipe end			
Tank - Pump	Optional			
Pomp – Spraying system	Fitted			
Motor				
Flender or similar	Standard direct drive motor			
Optional	Direct drive motor with adjustable gearbox, variable speed			
Pump				
Calpeda	Capacity 2.2 I/min. Each spray nozzle. P = 5-6 bar			
Optional, screen < 100 μ	Capacity 2.2 I/min. Each spray nozzle. P = 10-12 bar			
Level regulation				
Water pressure nozzles	IFM, alternative Vegabar en Vegamet 624			
Pressure transmitter	Suco, 1 – 30 bar			

Photo 5 Flender motor reductor

Control system

The control of the Auxill Micro Drum Filter is located in a stainless steel Rittal Box (see photo 6). The processor in the control cabinet is controlled by a signal from a pressure sensor, standard manufactured by IFM (see photo 7, an alternative manufactured by Vega).

Photo 6

Photo 7

During the rotation of the Micro Drum Filter with Flender reductor (see photo 5) the nozzles clean the screen from the outside using high-pressure spraying. The screw inside the collector transports the solid out.

This process will lower the level until al low level has been reached. The drum and the pump will continue to clean for about 10 to 20 seconds before it stops. The pump, fabricated by Calpeda (see photo 10), produces a water pressure of 5-6 bar or 10-12 bar intended for the sprayers. Water is sucked from the bottom of the Micro Drum Filter. This water has already been filtered by the MDF. Installing the levels take into account the pump does not run dry.

Spray pressure monitoring

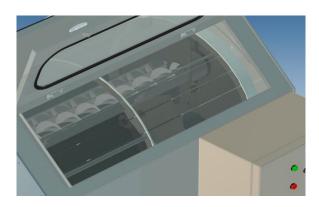

The Suco pressure transmitter (see photo 8) controls the water pressure on the spray bar. Proper operation of the spray bar is very important. This can only be guaranteed if the screen is cleaned orderly. A clogged nozzle can cause capacity problems. Blockage can thus be identified early.

Photo 8: Suco pressure transmitter (above) and water valve (below)

Photo 9: Manometer

Level control

The IFM pressure sensor gives a signal if the level does not decrease, for example due to extreme circumstances during the cleaning process, and keeps on rising even, it will reach high level. At this point the supply will be reduced or entirely closed, until the liquid has reduced to a lower level by means of the cleaning process. When it reaches a lower level, the supply can be opened again.

The filter has been designed and built in such a manner it requires only a minimum of maintenance. Visual inspection although is required every six months.

Photo 10 Pump Calpeda

Screen specifications					
Screens	Open area (%)	Weight (kg/m²)			
0.020 mm – 20 μ - 635 mesh H	25	0.13			
0.025 mm – 25 μ - 500 mesh H/D	25	0.16			
0.032 mm – 30 μ - 425 mesh H	28	0.17			
0.038 mm – 38 μ - 400 mesh H/D	36	0.13			
0.040 mm – 40 μ - 350 mesh H/D	31	0.18			
0.053 mm – 53 μ - 270 mesh H	35	0.18			
0.063 mm – 63 μ - 250 mesh H/D	37	0.20			
0.075 mm – 75 μ - 200 mesh H/D	34	0.28			
0.100 mm - 100 μ - 150 mesh H/D	36	0.34			
0.118 mm - 118 μ - 120 mesh H/D	31	0.54			
0.140 mm - 140 μ - 100 mesh H/D	31	0.63			
0.212 mm – 178 μ - 80 mesh D	46	0.41			
0.265 mm - 200 μ - 70 mesh D	53	0.35			

Flow capacity Auxill Micro Drum Filters (MDF)								
Type number	MDF 801	MDF 802	MDF 1202	MDF 1203	MDF 1603	MDF 1604	MDF 2004	MDF 2005
Filter area in m ²	1,1	2,2	3,4	5,0	6,9	9,2	11,7	14,6
Call da Land 40 may /l'three								
Solids load 10 mg/litre	Maxin	num flo	w in m	³/hour	*			
Screen size	I ICIXIII	14111 110	•••	, moun				
20	56	112	174	259	355	474	596	749
30	86	173	268	402	553	737	924	1.163
40	104	207	322	482	663	884	1.109	1.395
60	130	259	402	602	829	1.105	1.398	1.744
90	156	311	482	723	995	1.326	1.663	2.093
Solids load 15 mg/litre	Maxin	num flo	w in m	³/hour	*			
Screen size 20	51	101	157	235	323	431	548	680
30	78	156	241	361	498	663	843	1.047
40	95	190	195	442	608	811	1.031	1.279
60	121	241	375	562	774	1.032	1.312	1.628
90	147	294	456	683	940	1.253	1.593	1.977
Solids load 25 mg/litre Maximum flow in m³/hour*								
Screen size 20	31	62	97	145	199	265	499	623
30	52	104	161	241	332	442	832	1.038
40	69	138	214	321	438	589	1.017	1.269
60	95	190	295	442	608	811	1.294	1.615
90	121	242	375	562	774	1.032	1.571	1.960
Solids load 40 mg/litre Maximum flow in m³/hour*								
Screen size								
20	8	18	27	41	58	76	96	120
30	17	35	53	81	110	147	187	234
40	36	79	108	165	234	320	407	509

^{*} Kind of solids load (TSS) in incoming flow can have an effect on the final capacity. Above numbers are always an indication.

If your application is not mentioned in above list, please contact Auxill Nederland.

Test results

Waste water treatment - effluent polishing

As a result of various tests in waste water treatment plants we have compiled the following analyses of results; using the Auxill Micro Drum Filter in effluent polishing.

Waste Water Components	Before Filter	After Filter	Reduction
Fosfor, total DS 292	0.35 mg/l	0.08 mg/l	77.14%
BOD 5 DS 254 DS 2206	5.36 mg/l	2.70 mg/l	49.63%
Ammonia- Nitrogen ISO 7150/1	0.82 mg/l	<0.1 mg/l	87.80%
Suspended solids	9.18 mg/l	1.00 mg/l	89.11%

Test performed in Denmark December 1996

Suspended solids content						
Before installation MDF After installation MDF						
January 22th, 1997	5.1	February 22th, 1998	2.8			
February 12th, 1997	12.0	April 27th, 1998	2.1			
March 18th, 1997	2.0	June 8th, 1998	1.4			
April 1st, 1997	2.4	July 1st, 1998	1.7			
May 26th, 1997	37.0					
June 6th, 1997	6.0					
August 25th, 1997	22.0					
September 17th, 1997						
September 30th, 1997	8.0					
October 22th, 1997	3.9					
November 17th, 1997	4.4					
December 1st, 1997	11.0					
Average	10.5	Average	2.0			

The installation consisted of a MDF 2003 – 18 μ - after 4 tests the results were satisfying so that further testing was not requested by customer

Potato processing plant – removal of starch out of washing water

As a result of various tests in industrial production plants we have compiled the following analyses of results, using the Auxill Micro Drum Filter in effluent polishing.

Waste Water Components	Before Filter	After Filter	Reduction
Flow (total)	1800 l/h	1674 l/h	126 l/h (slurry)
Flow	100 %	93 %	7 %
COD	17400 mg/l	8960 mg/l	48.5 %
N-Ki	319 mg/l	185 mg/l	42.0%
Suspended solids	6890 mg/l	180 mg/l	97.4 %

Tests performed at the Danisco Food Factory in Holland May 1999 with MDF 801-20µ Objective to save on waste water treatment charges was achieved by a possible saving of € 450,=/day

Potato processing plant – removal of starch out of washing water

Waste Water Components	Before Filter	After Filter	Reduction
Flow (totaal)	800 l/h	764 l/h	36 l/h (slurry)
Flow	100 %	95.5%	4.5 %
Suspended solids	25 mg/l	8 mg/l	68 %